亲爱的读者,很多人可能对微积分基本公式有哪些和微积分的基本公式有哪些不是很了解,所以今天我来和大家分享一些关于微积分基本公式有哪些和微积分的基本公式有哪些的知识,希望能够帮助大家更好地了解这个话题。
本文目录一览
微积分基本公式有哪些?
微积分基本公式16个为:
(1)d( C ) = 0 (C为常数)
(2)d( xμ ) = μxμ-1dx
(3)d( ax ) = ax㏑adx
(4)d( ex ) = exdx
(5)d( ㏒ax) = 1/(x*㏑a)dx
(6)d( ㏑x ) = 1/xdx
(7)d( sin(x)) = cos(x)dx
(8)d( cos(x)) = -sin(x)dx
(9)d( tan(x)) = sec2(x)dx
(10)d( cot(x)) = -csc2(x)dx
(11)d( sec(x)) = sec(x)*tan(x)dx
(12)d( csc(x)) = -csc(x)*cot(x)dx
设f(x), g(x)都可导,则:
(1)d(f(x) + g(x)) = df(x) + dg(x)
(2)d(f(x) - g(x)) = df(x) - dg(x)
(3)d(f(x) * g(x)) = g(x)*df(x) + f(x)*dg(x)
(4)d(f(x) / g(x)) = [g(x)*df(x) - f(x)*dg(x)] / g2(x)
微分在数学中的定义:由函数B=f(A),得到A、B两个数集,在A中当dx靠近自己时,函数在dx处的极限叫作函数在dx处的微分,微分的中心思想是无穷分割。微分是函数改变量的线性主要部分。微积分的基本概念之一。
微积分的基本公式有哪些?
(1)微积分的基本公式共有四大公式:1.牛顿-莱布尼茨公式,又称为微积分基本公式
2.格林公式,把封闭的曲线积分化为区域内的二重积分,它是平面向量场散度的二重积分
3.高斯公式,把曲面积分化为区域内的三重积分,它是平面向量场散度的三重积分
4.斯托克斯公式,与旋度有关
(2)微积分常用公式:
Dx sin x=cos x
cos x = -sin x
tan x = sec2 x
cot x = -csc2 x
sec x = sec x tan x
csc x = -csc x cot x
sin x dx = -cos x + C
cos x dx = sin x + C
tan x dx = ln |sec x | + C
cot x dx = ln |sin x | + C
sec x dx = ln |sec x + tan x | + C
csc x dx = ln |csc x - cot x | + C
sin-1(-x) = -sin-1 x
cos-1(-x) = - cos-1 x
tan-1(-x) = -tan-1 x
cot-1(-x) = - cot-1 x
sec-1(-x) = - sec-1 x
csc-1(-x) = - csc-1 x
Dx sin-1 ()=
cos-1 ()=
tan-1 ()=
cot-1 ()=
sec-1 ()=
csc-1 (x/a)=
sin-1 x dx = x sin-1 x++C
cos-1 x dx = x cos-1 x-+C
tan-1 x dx = x tan-1 x- ln (1+x2)+C
cot-1 x dx = x cot-1 x+ ln (1+x2)+C
sec-1 x dx = x sec-1 x- ln |x+|+C
csc-1 x dx = x csc-1 x+ ln |x+|+C
sinh-1 ()= ln (x+) xR
cosh-1 ()=ln (x+) x≥1
tanh-1 ()=ln () |x| 1
sech-1()=ln(+)0≤x≤1
csch-1 ()=ln(+) |x| >0
Dx sinh x = cosh x
cosh x = sinh x
tanh x = sech2 x
coth x = -csch2 x
sech x = -sech x tanh x
csch x = -csch x coth x
sinh x dx = cosh x + C
cosh x dx = sinh x + C
tanh x dx = ln | cosh x |+ C
coth x dx = ln | sinh x | + C
sech x dx = -2tan-1 (e-x) + C
csch x dx = 2 ln || + C
duv = udv + vdu
duv = uv = udv + vdu
→ udv = uv - vdu
cos2θ-sin2θ=cos2θ
cos2θ+ sin2θ=1
cosh2θ-sinh2θ=1
cosh2θ+sinh2θ=cosh2θ
Dx sinh-1()=
cosh-1()=
tanh-1()=
coth-1()=
sech-1()=
csch-1(x/a)=
sinh-1 x dx = x sinh-1 x-+ C
cosh-1 x dx = x cosh-1 x-+ C
tanh-1 x dx = x tanh-1 x+ ln | 1-x2|+ C
coth-1 x dx = x coth-1 x- ln | 1-x2|+ C
sech-1 x dx = x sech-1 x- sin-1 x + C
csch-1 x dx = x csch-1 x+ sinh-1 x + C
sin 3θ=3sinθ-4sin3θ
cos3θ=4cos3θ-3cosθ
→sin3θ= (3sinθ-sin3θ)
→cos3θ= (3cosθ+cos3θ)
sin x = cos x =
sinh x = cosh x =
正弦定理:= ==2R
余弦定理:a2=b2+c2-2bc cosα
b2=a2+c2-2ac cosβ
c2=a2+b2-2ab cosγ
sin (α±β)=sin α cos β ± cos α sin β
cos (α±β)=cos α cos β sin α sin β
2 sin α cos β = sin (α+β) + sin (α-β)
2 cos α sin β = sin (α+β) - sin (α-β)
2 cos α cos β = cos (α-β) + cos (α+β)
2 sin α sin β = cos (α-β) - cos (α+β)
sin α + sin β = 2 sin (α+β) cos (α-β)
sin α - sin β = 2 cos (α+β) sin (α-β)
cos α + cos β = 2 cos (α+β) cos (α-β)
cos α - cos β = -2 sin (α+β) sin (α-β)
tan (α±β)=,cot (α±β)=
ex=1+x+++…++ …
sin x = x-+-+…++ …
cos x = 1-+-+++
ln (1+x) = x-+-+++
tan-1 x = x-+-+++
(1+x)r =1+rx+x2+x3+ -1= n
= n (n+1)
= n (n+1)(2n+1)
= [ n (n+1)]2
Γ(x) = x-1e-t dt = 22x-1dt = x-1 dt
β(m,n) =m-1(1-x)n-1 dx=22m-1x cos2n-1x dx = dx
如果您对本文的解答感到满意,请在文章结尾处点击“顶一下”以表示您的肯定。如果您对本文不满意,也请点击“踩一下”,以便我们改进该篇文章。